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Non-Gaussian Scaling Limits. Hierarchical Model  
Approximation 
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We extend a previous analysis of non-Gaussian fixed points of the block spin 
renormalization group in hierarchical models to a long distance analysis of the 
correlation functions. 
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1. INTRODUCTION 

The present paper completes the analysis (1) of non-Gaussian fixed points of 
the renormalization group (RG) in the context of hierarchical models. In 
Ref. 1 such fixed point Gibbs factors were shown to exist in the case of 
small e for model with long-range interactions decaying as 1~Ix -yld/2-~ 
or large N, for an N-component spin system. Here we extend this analysis 
by showing that the long distance behavior is, indeed, governed by the 
non-Gaussian fixed point. To recall from Ref. 1 (which the reader should 
have in hand), the Gibbs states we consider are given, in a box A M of 
volume L i d  in ira, by 

- (1) 
x E A  M 

where d ~  is a Gaussian measure with covariance G having the decay 

1 Centre National de la Recherche Scientifique, Institut des Hautes Etudes Scientifiques, 35, 
route de Chartres, 91440~Bures-sur-Yvette, France. 

2 Helsinki University of Technology, Department of Technical Physics 02150, Espoo, Finland. 
3 On leave from Department of Mathematical Methods of Physics, University, Warsaw. 

267 
0022-4715/84/0500-0267503.50/0 �9 1984 Plenum Publishing Corporation 



268 Gawedzki and Kupiainen 

l/Ix - y l  ~ as Ix - Y l  --> ~ (at M--- m). In the e case c~ = d / 2  - ~ and in 
the 1 / N  case a = d - 2. r = q,~, i = 1 . . . . .  N, N = 1 in the e case. The 
explicit form of G is not relevant here; we only need the following .facts 
about the RG, defined as map between Gibbs states. Namely, the trans- 
formed state, 

( - ) '  = f (  - ) do' (r (2) 

originally given by the block spin integral 

1 
a,'(o) = K f 8 ( r  c o ) d o ( o )  (3) 

COx = L '~/2-d ~ d&x+y (4) 
ly~l < r /2  

is in our hierarchical model given by 

d p ' ( o ) = l e x p [  - ~ v , ( ~ ) ] d / ~ o ( 0 )  (5) 
xEAm-i 

(G and O are now on AM_l) with 

exp[ - ~,(O)] = f e x p [  - Wo(0, z)] dp (z) (6) 

L d 
Wo(O,z) = 5 -  ( vo(~+ ) + Vo(,~- )) (7) 

r + = L-~/2>~ +_ z (s) 

1 e -(1/2~) dz (9) ap(z ) -  (2~)~/~ 

The transformation e - ~ ~  -~'  was in Ref. 1 shown to have a non- 
Gaussian fixed point for e small, N = 1 or a = d -  2, N large, and the 
stable manifold in the vicinity of the fixed point was also constructed. Here 
we wish to show that the states indeed exist in the M--~ oo limit and are 
critical with a being the exponent determining the infrared behavior of the 
correlations. That  in the e case the Gaussian (unperturbed) and non- 
Gaussian theories have the same exponent is an artifact of the hierarchical 
model. In  constrast, we will show, that in the scaling limit these theories 
indeed are non-Gaussian, governed by the non-Gaussian fixed point: the 
truncated correlations will not vanish. The analysis of the correlations 
below parallels the one for the Gaussian fixed point. (2) There is, however, 
an extra difficulty due to the fact that the so-called "small field region" 
does not expand in the process of iteration of the RG, owing to the 
non-Gaussian part  of the Hamiltonian which does not contract away. This 
problem is resolved by a more careful large field analysis. 
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2. THE SMALL e CASE 

We take now a = d / 2  - e with e small and N = 1. For definiteness 
take also d = 3. Consider an arbitrary correlation 

(~,x, . . .  ~xo)oo (1) 

As recalled from Refs. 1 and 2, the successive block spin decompositions 
correspond to expanding the field q~ as a sum of fluctuations 

M - - I  
X 

n = O  

(here A is a fixed function taking values _+ I). We evaluate (1) by succes- 
sively integrating out the z fields. Each such integration factors over blocks 
as in the case of the Gibbs factors. Denoting 

(- ),= f (-)exp[-wo(O,z)]d~(z)// f exp[-w~162 (3) 

we get 

After a finite number m of iterations, namely, as x = [ x i / L  m] = [ x J L  m] 
for all i, j ,  we have only one G] r 1 in (5). Then we iterate 

( G~')~ m = ( (  G~m)m)v,.+, ~ ( Gm+ ')v~+, = G~t(0) (6) 

We thus wish to control the operation 

G-~ G' = < G>m (7) 
Before tackling this, let us recall the Gibbs factors attracted by the fixed 
point. We considered e x p [ - % ]  given by 

exp[ - %] = go = go e-a~ (8) 

and satisfying the following: 
(a) go is even, analytic in [Im~,[ < [loge I, g(0)  = 1, g"(0)  = 0. 
(b) For ]~[ < [loge I go(~) = - l o g  go(~) is analytic with 

~o(~) = Xor 4 + ~o(~), ~o(O) = ~;'(o) = ~;"(o)  = o 

IXo-  Xl ~< E 3/2, sup I~ol < e 7/4 
lot < liog ~t 

with X = (1/36)L-3(1 - L2~-3). 
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(c) If I(hl ~> Ilogel, Ilmq~l < L-~/2llogel then 

[ I g0(*)l ~ exp / - ((ReqS) 4 

Then  it was shown that there exists a 0 = acrit in [ - 3 e  e/3, 3e 2/3] such 
that gn, the nth renormalized g, converges to a fixed point  g*, gn satisfying 
(a)-(c) too, with an ~ [ - 3e 2/3, 3e2/3]. Since we wish to show that the scaling 
limit is controlled by  this g*, let us sharpen the analysis of Ref. 1 slightly. 
Namely,  one can easily strengthen the knowledge on acrit and g*. 

Let  us first apply the analysis of Ref. 1 to the fixed point  g * =  
g*e -~*..2 which was shown to exist. The  estimates of Ref. 1: (2.19)-(2.2t)  
together with (2.37) give 

~* = Lz'X* _ 36L6-3a~* 2 + O(e  8/3) 

~ 2 l * -  e l o g L  
- -  -~ O(e 5/3) (9) 
18L3/2 

a* = L 3 - ~ a *  - 6L3-~X * + O(C 5/3) 

a* - 62t* 
1 - L -3/2 + 0(~5/~) (10) 

and then iterated once more, now with the a pr ior i  estimate a* = O(e): 

X * -  e l o g L  + O ( e 2 )  ' a * -  6~* 
18L 3 / ~  1 - L - 3 / 2  + O(e2) (11) 

Now consider iterating (a)-(c)  as in Ref. 1. Especially, look at a 1. Let  us 
assume, instead of a 0 E [ - 3e 2/3, 3J /3 ]  that 

lao-  a*l < d/3 (12) 

Then  from Ref. 1: (2.19) and (2.37) [compare with Ref. 1: (3.2)] 

a I = L3/2ao + 6L3/2X o + O(e  2) (13) 

whence [using (9) and (b)] 

a I - a* = L 3 / 2 ( a  0 - a * )  + ( L  3/2 - 1)a* + 6L3/2~k * 

+ 6L3/2(A 0 - X*) + O(e  2) = L 3 / 2 ( a o  - a * )  + O(e 3/2) (14) 

Hence  there is a closed interval I l c I 0 = [a ,  - e4/3, a ,  + ~4/3] such that as 
a o sweeps I l, a I sweeps I o. Thus  (a)-(c)  and (12) are stable with iteration. 



Non-Gausslan Scaling Limits 271 

Of course a. > a* too  So. what we need to know of g. is that 

[a. - a*[ -<< (4/3. [)k n - •*] < 2e 3/2 (15) 

6X. 
+ 0 ( ,  2) (16) 

a,  - 1 - L - 3 / 2  

and that (a)-(c) hold. 
Let us now show, that in the scaling limit the model defined by (8) and 

(a)-(c) indeed is non-Gaussian. We will, for simplicity, consider the con- 
nected four-point function 

G ~ ( X l  ' ' "  X4) = < ~ x , " " "  (~X4>�9 T = ( I ~ X , " " "  (])X4)t) 0 

- ~ (Ox#px:)vo(Ox~Ox,)vo (17) 
II 

We wish to show, that (at M -- ~ )  

lira L 2 * ' ~ [ G 2 ( L k x , , . . . ,  L'x4)[ (18) 
k--> oo 

exists and is nonvanishing (the reason we take absolute values is that due to 
the nontranslational invariance of the hierarchical model, the scaling limit 
as such is not well defined). 

To see the argument clearly, let us pick the points x I . . .  x 4 such that 
[ x i / L "  ] =-- x i , ,  as n increases, simultaneously fall to the same block: let n o 
be the first integer such that x i ,  ~ = x j ,  ~ for all i, j .  We have to compute 
separately the two-point and four-point functions. As in (4) and (5) 

(+Lkx, " ' "  +L~,)~o 

= L - 2 a ( O L k _ , x . . .  OL k IX4>/) I 

- 2a(no+ k -  1) 
= L (~X , .o ,  " ' "  ~ ' )4no-I )Vno+k I 

= L - 2 ' ~ ( n ~  4 3 
XtXlno / ~no+k 

+ L - 2 a ( n ~  , ) . . .  A(x4, ~ ,)((z40+k_ '>,0+k-'~' .... 

r - 2 a ( n o + k - l ) T - a / - - 2  / 2 + z. z~ s163 ~,, A(xi.o_,)A(Xj.o_,) 
pairs 

E A m t - 2 a m ( z 4 > m  
m = n o + k - I  

]) -t'- E R f - 2 a l l - a ( m - l ) / . ~ 2  ~ l  ~ ~ ",,.,,mGlm)m (19)  
n ~  v,,+l 



272 Gawedzki and Kupiainen 

where we denoted 

4 

A.+~_~ = 1-[ A(X,.o-O, 
i=1 

and 

A m --- 1 o the rwi se  

Bn+k-1 = 2 A(xino-l)A(Xjno-1), B m -- 3 o the rwi se  
pairs 

(20) 

G l ~-. ( G l _ l ) m _ l ,  Gill = (Z2), (21)  

Compute 4 ((Zm)~)Vm_, now. Let 

with 

Then 

Let us 
Ref. 1 : 

f Fm+l=gm+l(Zm>m~- 2 Um(~ ' zm)d P( zm) /  3 gm(Zrn) NP(Zm) (22) 

f~(ep, z) = gm( ~/+ )C3/2 gm( ~ -  )L3/2 (23) 

Vo+, = f go(+ + )f.(+,z~ + )-' a~ / f ao(z)L'a. (24) 

4 ((2m)m)vm+, = F M (0) (25)  

study F~+,.  For I~1 < Ilog~l, we write (X=X(IZ[ < allogel); see 

F.,+, = g..+~(f z~me-W'xa. + f Z~mX 1 d.) / ( f  e-W.,xa~ + f fmX ~ a~) 

4 X rm ) (26) = gm+l(Zm)m(1 + 

with r m analytic and bounded by 

Irm[ < E O(ll~ (27) 

Taylor expanding, we obtain 

4 X (1 + rm)(Zm) m 

+ rm)fz4exp[ + g3am Z2-  g3-a~km,2Z 2 -  g3~km Z4 ~ ( 1  

- L3~m(ep, z ) ] x d v / f e x p [ L 3 a . S  . . . .  ]xdu 

= ~m+l + &+,~,2 + Gm+,(~,) (28) 
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with 

o%+~ = 3 + 12L3am - 96L3Xm + O(e 2) (29) 

~m+' = -- 12L3/2~km + 0(r (30) 

lam+l(q~)[ < O(e 2) (31) 

For the large field, I~,1 >~ Iloge], IIm'/'l < L-"/ZJlogc{, we write 

F m + l  = Olm+lgm+l "4~ F m + ,  (32) 

and have (there is considerable freedom here) 

[ X ((Re~)4 + ~(Re,)2)] (33) IP,~+,(o)I < ( R e * ) 4 e x p  k - 

We now claim iteratively: (A) F. is analytic in ]Im~,)< )log~ I, even 
and 

& = ~.go + L ,  Po(0) = 0 
(B) For I~l < [loge[ 

with 

IOLn -- an--1 -- Bn--ll  • dl L-e~(n-m)~-2 

I c%-  &-d < a2L-~~ 

IG.(qs)l < d3L-'~(n-m)e 2, a(i)(l~)[q~= 0 = 0, i = 1 . . . .  , 3 

(c) For 101 > Ilogr Itm,~l < L-~162 

j,~j ~ ~ * ~'~.eO)~ox~ I -  ~ (~.eO)" + ~ ~.o0~)] 
The iteration of (A)-(C) is straightforward: Consider (B). We get, as in 
(26), 

F . + l  = %gn+l  + G . + l g n + l  (34) 

with 

- ( ff.x~-a~) -1 
G/,+I = (G , , )  x 1 + fe_ ,~oxdt  ' 

+ f Lgo(~+)-lfox~,c~// f Jod~ 
(35) 
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and all the factors analytic in fact in I~1 < ( 1 -  3)L"/21logcl. Taylor 
expanding 

(6 . )~  = L - % ,  ~ + r  + (Go) ~ 

= & ( : ) G ~ 0  + ( ~  

( ':k + ,2 /.-% + ~ ~ ,=0(&: + Go)~ 

+ a,;(O) 
we estimate 

(36) 

(z2)Xl+= 0 = 1 + O(r (37) 

[ d2 
I<G~>~1~ol, ~-~ (do):l~=o < Cd, L-~ (3S) 

d2 /z2) x < C~ (39) 
9=0\ n 

Id~(~)l < �89 -~(~ for I~l < Ilog,L (40) 

where for G,~ we got contraction due to restriction to a smaller region (see 
Ref. 1). (34)-(40) yield (B) for n + 1. 

As for (C), note that 

P.+~  = F . + 1  - ~ . + I g . + ~  

As in Ref. 1 [see (2.38) on], we consider separately Izl <�89 L-"/21Re(~I and 
Izl >�89 Note that (C) holds for all 0 provided we replace 
(Reeo) 4 by (Re4)) 4 + 1. Thus for ]z I <�89 

(Re ~ + )4 + 1 < �88 L - "  (Re 0) 4 (42) 

(since IRe ~{ > Ilog ~1), whereas for I zl > �89 L-"/21Re 4'1 

(Re++)4+  l < 4(L-2~(Re(~)4 + z a) + 1 

< L-~(Re , )4 ( I  + z 4) (43) 

The analysis of Ref. 1 may now be applied to the second term in (41) giving 
for it a bound 

L-"( ' - '~) �89 . )]. (44) 
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Owing to (B) and (C) for gn [recall (8) and a n = O(e)], we now get (C) for 
n + l .  

As a result, from (25) (taking also M ~  m) 

4 -- ~ L-C~l,~ 0 ( , 2 )  ( ( Z m ) m ) v ~ + ,  ~-" 3 + 12L3am 96L3Xm -'l- /3m+ 1+l"]- 
l=0 

[ 
= 3 + 12L3[am - 8~ m 

Next consider the G~ of (21). Write again 

gmG~ = F~ 

L - 3 / 2 X m  ) 
+ o(d)  (45) 

Then a similar analysis as above establishes (A)-(C) for F~, the only 
difference being the starting values (29) and (30), which now are 

a L ,  = 1 + 2L3at - lZL3Xz + O(E  2) (47) 

/~/+1 = -- 2L3/2X/ '{- O(E2)  (48)  

Hence for I'll < Ilog,I 
Gm t = am' + /3ml~ 2 + G2(*) (49) 

with 

t 1 + 2L3at 12L32,l _ 2L3/2)t! 1 - L - 3 / 2 ( m - l )  
O~m = -- 1 -- L - 3 / 2  + 0 ( ` 2 )  (50)  

fl~ = L - " ( m - z - 1 ) ( - 2 L 3 / Z X ,  + O(e2)) (51) 

I m'l < d t  (52) 
Now we may compute ((z2G,,,)m)vm+, in (19), again setting up an iteration 
as above. We get for 

2 l --/ 
gm+l(ZmGrnSm ~ F,~+, (53) 

(A)-(C) [with some multiplicative factor in (C)] and from (49)-(52), for 
[q,[ < Ilog,I, 

Fm/+l ~--- g m + t ( ~ / + l  "4- /~m/+ 1~ 2 "t- Gm/+1(,)) (54) 

with 
--I l m l O~m+ 1 = O~m+ iOLm+, -- 2/~ m "1- 0 ( '  2 ) (55)  

~ / +  = ( m + l  OLm l~tm+l "l- O~m+lt~r~+l)"[- O (  l m (56)  

Thus it follows that 
2 l 2 2 l ((zmG/,,)m)vm+, = ((Zm))Vm+,((Z 55~,+. -- 2fi~m + O(,  2) (57) 

(46) 
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with 

2L3/2~km 
2 = 2L3(am 6;km ) + O(C2) 

( ( Z m ) m ) V m + l  1 + --  1 -- t -3 /2  

10L3/2~. m 
= 1 + + 0 ( ,  ~) (58) 

1 - L - 3 / 2  

where we recalled that 

6am 
+ O(e 2) (59) 

am - -  1 -  L - 3 / 2  

Since the two-point function is given by 
M - 1  

= L ({Zm)m> . . . . .  "~ A(Xi.o-,)A(Xj.o-1) (~)Lkxi~kLkxj)Vo E -- am 2 
m=no+k 

2 (60) X ((Zno+k_l)no+k_l) .... 

we may combine (19), (57), and (60) to get (at M = ~ )  

( ~ t  kxl " ~ ~ ~) t  kx4)t) T 

m=no+k-I 
--2ezm 4 - -  3 ( ( Z m ) m > v ~ + ,  ) Am L ( ( ( Z m ) m ) ~ , . +  ' 2 2 

m-I Rl -~(m+0t~l ]  L-Z~(n0+k)O(c2) (61) 
l=no+k-1 1 

By (45), (58), and (59) 

4 2 2 = -24~mL3(1 O ( L  3/2)) + O(~2) (62) ((Zm)m)Vm+,- 3((Zm)m)v,,,+, + 

Recalling that (see Ref. 1) 

IXm -- ~'m+ iI ~< (1 - ,)m 3/2 (63) 

whence for k large enough 

I~kn+k -- X*[ ~'~ O(IE 2) (64) 

we obtain from (61), (51), and (62) 

lim 2~k ~ = +24L-2~"X*(1 + O ( L  3/2))L6+ O(e 2) k ~  L I<'~Lkx,''''~Lkx,>vol 
(recall that IA[ = 1), i.e., the scaling limit is non-Gaussian, determined by 
the fixed point (it is indeed easy to show that as k--~ or only the fixed point 
contributes). 

The other correlation functions are bounded in a similar way (see also 
Ref. 2). Above we got as a by-product for the two-point function, from (60) 
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and (58), that 

~176 ( lOL3/2Xm ) 
<(?x~y)vo = m~_n L-am 1 -I- i S  -~3y-2 

+ A(x._I)A(),n_,)  l + + - a n  

1 - L -3 /2  

and thus the decay 1/Ix - yl" as  Ix - Yl ~ oo. 
For such correlations the decay with exponent a comes somewhat 

trivially, since (q>>m = L-<'/2@ �9 For completeness, let us show, that this 
decay persists for more complicated correlations too. Consider a two-point 
function 

<~bm. m 7" { (0~ym)~o , m odd 
' ~;  ~v0 = . <I~)X"t(S); )VO- <~)xm >VO<~) fm )vo '  m even (65) 

Let m be odd first. Let again 

Fl:y(++)mfOdP/ yg(z)L3dp (66) 

and F. be as before. We show inductively the following: 
I. F. is analytic in [Img~ 1 < [loge[ with 

r .  = %g.@xo + f f~; ff',~ (0) = 0 

2. For I<~1 < Ilog~l, P.  = g . ~ .  with 

ld.I < d,L -~ I '~.+,- e~.L-<~l=l < d2 L-<<" 

3. For l<s>l > Ilog~t, IIm<S>l < Z,-<'/211ogcl, 

[fin[< L-~"(Re+)mexp[ - # ((Re+) 4+ ~ (Re@)Z)] 

Let again x,o = Y-o, no first such integer. Then 

goo-,(%,) Voo_, 
L-noa/ -~ -ix 

= trnog, ,  o )~.o (67) 

where T n is now iterated with 

1. P . = ~ . + F , , ,  F.(0) = 0 

2. ~,, = g,,~,,, I~ol < <7,L -~176176176 I~ .+ , -  ~.1 < <7~L :/~.-.o~ 

[ ~( (ReqS)4-F t~ (Re*)2)] 3. IF.I < d3(ReqO=mL-<~/2( ' i - "~  - ~ 
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The iterations as well as the even case are left as an exercise for the reader. 
We should note that of course an arbitrarily accurate (O(e2)) analysis is 
possible here too. 

3. THE LARGE N CASE 

The discussion of the multicomponent model parallels the one of the e 
case; we will hence be brief. In Ref. 1 it was shown that the iteration (1.6), 
(1.7), with a = d -  2 (=  1 for d = 3, which will be considered here), N 
large, has a fixed point g.(~2), conveniently written as 

g.(O2) = e-(~c/2)a*Y~*(~02 + y)  (1) 

where 

0 2 ~b2 
Y = - V  - ~~ - - ~ (2) 

L 
~ -  r -  1 (3) 

if* and a* satisfy the properties (a)-(c) below. The critical manifold in the 
vicinity of g* was characterized by the following properties of g,, each 
g, being the RG transformation of gn_ l, g, being attracted to g*. Fix 
c < %(L), N > No(e, L). Then 

(a) gn(O 2) = gn((? 2 +y)e -(~v/2)a'~ with ~. analytic in ]Im~[ < e /2~ o, 
s  - '  ~ go(~o) = 0. 

(b) For lyl < c, 

[ N ~.(~02 + y )  = exp - 7 v ? . ( y )  

with wn analytic, rP.(y) = iX.y2 + % ( y )  and 

IXn__X,l<3L-n/2d/2, IX, L-l] ~3/2 L 3 4 

la. - a* I < 3L-"/2E 2, [a.[ < 3c 2 

(c) 

[v~*" -- #s ~< 3L-"/2~3/4, I#~'[ ~< ~3/4 

For [Im,/,[ < L-~/2c/2q, o, lyl ~ ~, 

]~,,(ee2+ y)l < exp[- N x~(Re y)2 + -~X~(Im y) 2] 

with Xoo = (L - 1 ) /L  3. 
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Let us consider the two-point function. We get 

1 1 L- (~o- l )  
Cx~ = ~ <,/,x '&Lo = ~ <'/X-, ,I,~.o_ ,>V.o_, 

_ 1 L-"O<ex .e, o>Oo + 1 N . . . ~ L-('~ -,Dv~ 

M - 1  

= X L-;Af i~t(0)  (4) 
l = n  o -  1 

as in Section 2. Here 

1 <zb; ,  o~  = < o ;  ,>,._,  O/+ , = ~ , . _  r 

Consider computing a z expectation (F(4~, z));(d?). For an O(N) invariant 
one (as in <z2);) we may choose coordinates such that q~= NV2(4~,0), 
z = NV2(s,t~), ~2 = u (see Ref. 1) and write 

with 

Thus 

x exp[ - ~- 

(6) 

(7) 

G/+~ = ( s  2 + u);  (8) 

where (with abuse of notation) ( - ); now refers to the expectation (6). 
Let us analyze (s 2 + u); now, and take first the case lYl < e. Recall 

from Ref. 1, that G; has a stationary point in s = 0, u = Uo(y ) = 1 + [(L - 
1)/LZ]y + O(e 7/4) in C 2. We deform the s, u contour R x ~+ c C 2 to 

C =  1~\ ~ , ~  • U ~,.#. X C (9) 

where C is the piecewise linear curve passing through the saddlepoint 

C =  0 , 1 - - ~  U 1 - ~ , U o -  ~ U u o - - 4 , U o +  ~ 

U u o + ~ , l +  ~ U [ l + e / 2 , + r  

(see Fig. 1). 
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Imu 

Uo 
I 

f \ c 
I r 

1 Re u 

Fig. 1. 

Taking 

we write 

~ ' i  • Uo-~,Uo+~ 

(F(s ,u))=(F(s ,u))c '  + f c \ c F G /  fc G 

where ( - )c' is (6) with fc' ds du. Note that we have distorted the contour 
only in the analyticity region of G (and by assumption, of F); see Ref. 1 
where an analogous region was used. Analyze now the (main) term (F)c . .  
We need the following properties of G (see Ref. 1). Write u = uo(y ) + ~. 
Then 

[ Nvt(s ,  Uo+~,y)] (10) G t(s,u 0 + r 2 , y ) = e x p  - ~  

with 

V,(S, Uo+ a,y) = (o,A,(y)o) + r + V,(O,.o,y) ( l l )  

where o = (s, u"), Az(y ) = (32V/0o2)[o=o . From (a)-(c) it follows, that (see 
Ref. 1) 

al(.y) ~ (6 O) --]- O(1~3/4) (12) 
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and 

l~,(y,o)l  < c, lol 3 (13) 

with C,, e.g., Cc -'/4. All the functions are analytic iny .  
Make now a change of variables o' = ~ - o  

= ds da (F(s'u)>c' fss<Nt/'/2 f~,<.N,/,/4 
•  uo+ N-' /2a)e-W(Y'" ' ) / (F= I) (14) 

with 

W(y, o') = �89 + �89 Nl~(y, N -'/20') (15) 

Since [Nl~(y, N -  '/2o')1 < C,N-  '/21o'13, (14) is an expectation in a weakly 
perturbed (cutoff) Gaussian. Thus easily [denote (14) by ( - >w] (take also 
N l/2e >> 1) 

[(o">wl < CN-"/= (16) 

In particular, 

with 

G # l  / \ ,+,tyJ - <*~ + U>o, = Uo,(y) + 81+,(y) (17) 

[G/+,(Y)I < C (18) 
( g  

Since [u0l(y ) - u0t(0)[ < Cly t (see Ref. 1) and 

by analyticity. 

ay ~ 

t+~(Y) = "l+~t j + l+l(Y) 
with 

(19) 

Id;'+,(y)l ~ c ly l  (20) 

The rest of the contributions to G/+, in (9) are bounded using the positivity 
properties of G for large s or u, exactly as in Ref. 1, yielding an O(e ~u) 
bound. Thus, for [y] < (, 

a/+,(y) = G/+,(0) + d/+,(y)  (21) 
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with G/+l satisfying (20) and 

GL,(o) = Uo,(O) + o ~ 

We still need the estimates for JYl > r Ilmq,] < e /20o(L.  Consider F/+ 1 
= gz+ 1 Gl% 1 given by 

(23) 

We bound F/+• as we bounded gt+l in Ref. 1, (5.46), (5.47), (5.54)-(5.56). 
Namely, by (5.46)-(5.47) 

f s au bG z ( S, U, q~) as du 

3 -- I N Lho~(i m 2)2 N L(2 + L Xoo) )too(Re y)2 + X exp - ~- 

_ N2 + NO(et'/4)] (1 + O(e-SN)) (24) 

and by (5.55)-(5.57) 

( 2 4 ) < . N _ ~ ( l + O ( N - , / 2 ) )  e ,N~2exp[_ ~11 hoo(Re),)2 + N ~- )too (Im y)2] 

x fdsd,, c(,, U,,o) (25) 

(we have extracted an extra e "N"2 piece from the marginal term for later 
convenience). 

Thus, again defining 

F/+, = gz+,G/+,(O) + ['/+, (26) 

we get 

2-N hoo(Im v) 2 ] (27) 

Iteration of Gm z now is straightforward. We write 

Gm t = ol mz + d m  t ' G~(0) = 0 (28) 

FI __ SmGI l -1 = % g , .  + F L ( 2 9 )  
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and prove 

16m'l-< CL-(m-I-O/21Yl (30) 

IO/m/+1- am/[ ~< C L - ( m - l - ' ) / 2 e  3 (31) 

�9 _ -2-N )~ ( Im y)2] (32) ]ffm/I < 2 L - ( m - ' - l ' / 2 e x p [ -  ~1 7t~(Re y)2 + 

The iteration starts from 

-~" -- --O/m/)gm+l S /~ /  / ; F~+," (O/m/+, + ( f ) G f f  (s,u, ep) G(s,u, Oo ) (33) 

where f = L -  ly + 2q, s / ( -L + s 2 + u - I and Gff has in (7) one power less 

of g l ( L -  1~)2 _[_ 2~)s / f f -L  --F s 2 --[- u).  Assuming (31) and (32), (32) for m + 1 
follows: from the analogs of (24) and (25) we get a smaller multiplier 
e -~nd < L - ' ,  say, to the estimate of the second term of (33). 

For (31) note that 

( 20o  s2 )) 
O/m+'. -- O/m = < 8 / ) ( 0 )  = (L-NT/2 "~- -N- "~ ~ + b/0(0 ) -- 1 

w(0, o') 

where 
z l IG~+~l < O(e-~NL-(m-l)/2) 

and all terms are analytic. The first two terms in (36) are 

o aY -~y, G /. 
2 @ ( y ' ) S ' s ' 2 u '  ) )  

+ (LN)  1/2 + N- + ~IN +uo(y' ) - 1 
W(y,o') 

(38) 

The expectation in (38) is bounded as in (35), using Uo(y' ) = 1 - ( 1 / L -  

(37) 

+ O(e -~L-(m-'v2) (34) 

the first term being bounded by (30), (15), and (12) by 

c[1 + O(a/4)]L-(m-'- 'v ~ I.o(0) - 11+ 0 ~ -  

1 -(m-Oe3 <. ~ CL (35) 

since by Ref. 1, Lemma 1, Uo(0 ) - ! = O(e15/4). Finally for (30), we get 
from (33) and (34) 

~1 ~l ~ ~l ~l G/.+, = (G/~(y))w(y,o,) - (y  = O) + G/.+, - G,~+,(0) (36) 
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1/L2)y ' + 0(c3/2), by (for lY'I < 2~, say) 

3L-2c �9 CL L(m-l-b/2 (39) 

and by Cauchy's formula, for lY'[ < c 

_~y,(_3, ) <_~1 CL - ( m  - l ) / 2  (40) 

(37), (38), and (40) yield (30). Thus 

G~(0) = [1 + O((3)1 (41) 

and the two-point function has the familiar decay. Moreover, as l increases, 
by (b) Gl(0) = lim/_,~GtM(0) tend to G*(O) determined solely by the fixed 
point (we need to know that [u0t(y ) - Uo,(y)l = O(L-Z/2), which is easily 
deduced from the analysis of Ref. 1). Thus the scaling limit is determined 
solely by the fixed point. 

To get the nontriviality of the scaling limit (e.g., for a four-point 
function, one has to go to the next order in 1/N.  For example, for an O(N) 
invariant four-point function with points x i such as in Section 2, we have 

<(,x, �9 ,x3( x3-,x3>oo 

= L 2,,<(,xL)2>. 

+ L - a " + ' [ < 0 2  (z2),,_,)v.(Ax,. Axe._, + A~._ A .... ,) 

+ L -2(" ')(((z2)2)._,)~o (42) 

By O(N) invariance again 

(?aO'<ZaZfl)n_l ---- N202<s 2) (43) 

The non-Gaussian contributions come, e.g., in ((zZ) 2) = N2((s2+ u)Z) 
from the term (if2), not present in the Gaussian (s 2 + u)(s 2 + u), which is 
O(1/N)  as well as in the iteration of (uo(y)2). Derivation of such system- 
atic 1 /N  expansion is straightforward, albeit tedious and will not be 
pursued here. 
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